NTRODUGTION TO COMPUTER VISION

Atlas Wang

Associate Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin
https://vita-group.github.io/

What is an image?

$$
f(\boldsymbol{x})
$$

grayscale image

What is the range of the image function f ? the image function?

$$
\text { domain } \boldsymbol{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

A (grayscale) image is a 2D function.

What types of image filtering can we do?

Point Operation

point processing

Neighborhood Operation

How would you implement these? original

darken

non-linear raise contrast
invert

lighten

raise contrast

non-linear lower contrast

How would you implement these? original

Examples of point processing
darken
lower contrast

non-linear raise contrast
x
invert

lighten

raise contrast

non-linear lower contrast

How would you implement these? original

Examples of point processing
darken
lower contrast

non-linear raise contrast
x
invert

lighten

raise contrast

non-linear lower contrast

How would you implement these? original

x
invert

Examples of point processing
darken
lower contrast

non-linear raise contrast
$x-128$
lighten

raise contrast

non-linear lower contrast

How would you implement these? original

x
invert

$255-x$

Examples of point processing
darken
lower contrast

non-linear raise contrast
$x-128$
lighten

raise contrast

non-linear lower contrast

$x+128$

How would you implement these?

Examples of point processing
original

x
invert

$255-x$
darken

$x-128$
lighten

lower contrast

$\frac{x}{2}$
raise contrast

non-linear raise contrast

non-linear lower contrast

$x+128$

How would you implement these? original

x
invert

$255-x$

Examples of point processing
darken
lower contrast

$\frac{x}{2}$

$x-128$
lighten

$x+128$
raise contrast

$x \times 2$
non-linear raise contrast

How would you implement these? original

x
invert

$255-x$

Examples of point processing
darken
lower contrast

$\frac{x}{2}$
raise contrast

$x \times 2$
$x+128$
non-linear raise contrast

$$
\left(\frac{x}{255}\right)^{1 / 3} \times 255
$$

non-linear lower contrast

How would you implement these? original

x
invert

$255-x$

Examples of point processing
darken

$x-128$
lighten

$x+128$
lower contrast

$\frac{x}{2}$
raise contrast

$x \times 2$
non-linear raise contrast

$$
\left(\frac{x}{255}\right)^{1 / 3} \times 255
$$

non-linear lower contrast

$\left(\frac{x}{255}\right)^{2} \times 255$

Linear shift-invariant image filtering

- Replace each pixel by a linear combination of its neighbors (and possibly itself).
- The combination is determined by the filter's kernel.
- The same kernel is shifted to all pixel locations so that all pixels use the same linear combination of their neighbors.
- Modern name? Convolution (yes, the same guy in convolutional neural network)

Convolution for 1D continuous signals

Convolution for 1D continuous signals

Definition of filtering as convolution:

Consider the box filter example:
1D continuous box filter

$$
f(x)=\left\{\begin{array}{lc}
1 & |x| \leq 0.5 \\
0 & \text { otherwise }
\end{array}\right.
$$

filtering output is a blurred version of g

$$
(f * g)(x)=\int_{-0.5}^{0.5} g(x-y) d y
$$

Convolution for 2D discrete signals

Definition of filtering as convolution:
filtered image

Convolution for 2D discrete signals

Definition of filtering as convolution:

If the filter $f(i, j)$ is non-zero only within $-1 \leq i, j \leq 1$, then

$$
(f * g)(x, y)=\sum_{i, j=-1}^{1} f(i, j) I(x-i, y-j)
$$

The kernel is the 3×3 matrix representation of $f(i, j)$.

Convolution vs correlation

Definition of discrete 2D convolution:

$$
(f * g)(x, y)=\sum_{i, j=-\infty}^{\infty} f(i, j) I(x-i, y-j)
$$

Definition of discrete 2D correlation:

$$
(f * g)(x, y)=\sum_{i, j=-\infty}^{\infty} f(i, j) I(x+i, y+j)
$$

- Most of the time won't matter, because our kernels will be symmetric.
- Will be important when we discuss frequency-domain filtering

Simplest Convolution: the box filter

- also known as the 2D rectangular filter
- also known as the square mean filter

kernel $g[\cdot, \cdot]=\frac{1}{9}$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 1 | 1 | 1 |

- replaces pixel with local average
- has smoothing (blurring) effect

Let's run the box filter

note that we assume that the kernel coordinates are centered

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

Let's run the box filter

0	0	0	0	0	0	0	0	0	0
0	0	0	0		0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

shift-invariant: as the pixel
shifts, so does the kernel

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} g \underset{\text { filter }}{ } g[k, l] \underset{\text { image (signal) }}{ } f[m+k, n+l]
$$

Let's run the box filter

$g[\cdot, \cdot]$		
kernel		
1		1
$\frac{9}{9}$	1	
	1	

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{f[m+k, n+l]}
$$

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

$$
\left.\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\substack{\text { filter }}}{g} \underset{\text { image (signal) }}{g}, l\right] f[m+k, n+l]
$$

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

Let's run the box filter

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

image $f[\cdot, \cdot]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0	10	20	30	30	30	30	20	10
	0	20							

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

image $f[\cdot, \cdot]$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
	0	10	20	30	30	30	30	20	10
	0	20	40						

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

image $\quad f[\cdot, \cdot]$										output										
0	0	0	0	0	0	0	0	0	0											
0	0	0	0	0	0	0	0	0	0			10	20	30	30	30	30	20	10	
0	0	0	90	90	90	90	90	0	0		-	20	40	60	60	60	S	0	20	
0	0	0	90	90	90	90	90	0	0			30								
0	0	0	90	0	90	90	90	0	0											
0	0	0	90	90	90	90	90	0	0											
0	0	0	0	0	0	0	0	0	0											
0	0	0	0	0	0	0	0	0	0											
0	0	90	0	0	0	0	0	0	0											
0	0	0	0	0	0	0	0	0	0											

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} \underset{\text { filter }}{g[k, l]} \underset{\text { image (signal) }}{ }[m+k, n+l]
$$

Let's run the box filter

$g[\cdot, \cdot]$	
kernel	
1	${ }^{1}$
	I
9	-

Let's run the box filter

$g[\cdot, \cdot]$		
kernel		
1	${ }^{\prime}$	1
$\frac{1}{9}$	-	
	1	

... and the result is

$$
\underset{\text { output }}{h[m, n]}=\sum_{k, l} g \underset{\text { filter }}{g} \underset{\text { image (signal) }}{ }[k, l] f[m+k, n+l]
$$

Some more realistic examples

Practical matters: what about near the edge?

- The filter window falls off the edge of the image
- Need to extrapolate!
- Common ways:
- clip filter (black)
- wrap around
- copy edge
- reflect across edge
-

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

example: box filter	1	1		1	$=$			*	1	1	1	1
	1	1		1					row			
	1	1		1								

What is the rank of this filter matrix?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

example: box filter	1	1		1	$=$			*	1	1	1	1
	1	1		1					row			
	1	1		1								

Why is this important?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".

example: box filter	1	1			$=$			*	1	1	1	1
	1	1		1					row			
	1	1		1								

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has $\mathrm{M} \times \mathrm{M}$ pixels and the filter kernel has size $\mathrm{N} \times \mathrm{N}$:

- What is the cost of convolution with a non-separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".
example: box filter

1	1	1		
1	1	1		
1	1	1	$=$	1
:---				
1				
1				
column				

* row

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has $\mathrm{M} \times \mathrm{M}$ pixels and the filter kernel has size $\mathrm{N} \times \mathrm{N}$:

- What is the cost of convolution with a non-separable filter?

- What is the cost of convolution with a separable filter?

Separable filters

A 2D filter is separable if it can be written as the product of a "column" and a "row".
example: box filter

1	1	1		
1	1	1		
1	1	1	$=$	1
:---				
1				
1				
column				

* row

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has $\mathrm{M} \times \mathrm{M}$ pixels and the filter kernel has size $\mathrm{N} \times \mathrm{N}$:

- What is the cost of convolution with a non-separable filter?
- What is the cost of convolution with a separable filter?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$
f(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$
f(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

- weight falls off with distance from center pixel

Is this a separable filter?

kernel $c |$| | 1 | 2 |
| :---: | :---: | :---: |
| | 16 | 1 |
| | 2 | 4 |
| | 1 | 2 |

Any heuristics for selecting where to truncate?

- usually at 2-3o

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$
f(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{i^{2}+j^{2}}{2 \sigma^{2}}}
$$

- weight falls off with distance from center pixel

Is this a separable filter?

Any heuristics for selecting where to truncate?

- usually at 2-3o

Gaussian filtering example

Gaussian vs box filtering

original

Which blur do you like better? Why?

7x7 Gaussian

$7 x 7$ box

Other filters

input

filter

output
?

Other filters

input

filter

output

unchanged

Other filters

Other filters

Other filters

Other filters

- do nothing for flat areas
- stress intensity peaks

Sharpening examples

Sharpening examples

Do not overdo it with sharpening

original

sharpened

oversharpened

What is wrong in this image?

Not all simple filters are "linear transform" !

A Simple yet Important Exception: Median Filter

- Operates over a window by selecting the median intensity in the window

- Belong to the class of "rank" filter as based on sorting gray levels
- More example: min, max, range...
- "Modern name" in deep learning? "Pooling"

Median Filter: When/Why better than Box Filter?

Fourier transform

Fourier transform

inverse Fourier transform

Computing the discrete Fourier transform (DFT)

$$
F(k)=\frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j 2 \pi k x / N} \text { is just a matrix multiplication: }
$$

$$
\boldsymbol{F}=\boldsymbol{W} \boldsymbol{f}
$$

$$
\left[\begin{array}{c}
F(0) \\
F(1) \\
F(2) \\
F(3) \\
\vdots \\
F(N-1)
\end{array}\right]=\left[\begin{array}{cccccc}
W^{0} & W^{0} & W^{0} & W^{0} & \cdots & W^{0} \\
W^{0} & W^{1} & W^{2} & W^{3} & \cdots & W^{N-1} \\
W^{0} & W^{2} & W^{4} & W^{6} & \cdots & W^{N-2} \\
W^{0} & W^{3} & W^{6} & W^{9} & \cdots & W^{N-3} \\
\vdots & & & & \ddots & \vdots \\
W^{0} & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^{1}
\end{array}\right]\left[\begin{array}{c}
f(0) \\
f(1) \\
f(2) \\
f(3) \\
\vdots \\
f(N-1)
\end{array}\right] \quad W=e^{-j 2 \pi / N}
$$

In practice this is implemented using the fast Fourier transform (FFT) algorithm.

Fourier transforms of natural images

The convolution theorem

The Fourier transform of the convolution of two functions is the product of their Fourier transforms:

$$
\mathcal{F}\{g * h\}=\mathcal{F}\{g\} \mathcal{F}\{h\}
$$

The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms:

$$
\mathcal{F}^{-1}\{g h\}=\mathcal{F}^{-1}\{g\} * \mathcal{F}^{-1}\{h\}
$$

Convolution in spatial domain is equivalent to multiplication in frequency domain!

Spatial domain filtering

Frequency domain filtering

Gaussian blur

Box blur

More filtering examples

$?$

filters shown
in frequency-
domain

More filtering examples

band-pass

filters shown in frequencydomain

More filtering examples

high-pass

眞 The University of Texas at Austin Electrical and Computer Engineering
Cockrell School of Engineering

