

Spring 2024

INTRODUCTION TO COMPUTER VISION

Atlas Wang

Associate Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin

https://vita-group.github.io/

What is an image?

grayscale image

What is the range of the image function f?

A (grayscale) image is a 2D function.

What types of image filtering can we do?

Point Operation

point processing

Neighborhood Operation

"filtering"

Examples of point processing

invert

Examples of point processing

 \boldsymbol{x}

invert

Examples of point processing

 \boldsymbol{x}

255 - x

Examples of point processing

 \boldsymbol{x}

x - 128

255 - x

Examples of point processing

original

 \boldsymbol{x}

x - 128

255 - x

x + 128

Examples of point processing

original

 \boldsymbol{x}

x - 128

 $\frac{x}{2}$

255 - x

x + 128

Examples of point processing

original

 \boldsymbol{x}

x - 128

 $\frac{x}{2}$

invert

255 - x

x + 128

 $x \times 2$

Examples of point processing

original

 \boldsymbol{x}

x - 128

 $\frac{x}{2}$

 $\left(\frac{x}{255}\right)^{1/3} \times 255$

invert

255 - x

 $x \times 2$

Examples of point processing

original

 \boldsymbol{x}

x - 128

 $\frac{x}{2}$

 $\left(\frac{x}{255}\right)^{1/3} \times 255$

$$255 - x$$

x + 128

 $x \times 2$

$$\left(\frac{x}{255}\right)^2 \times 255$$

Linear shift-invariant image filtering

- Replace each pixel by a linear combination of its neighbors (and possibly itself).
- The combination is determined by the filter's *kernel*.
- The same kernel is shifted to all pixel locations so that all pixels use the same linear combination of their neighbors.
- Modern name? Convolution (yes, the same guy in convolutional neural network)

Convolution for 1D continuous signals

Convolution for 1D continuous signals

Definition of filtering as convolution:

filtered signal filtering as convolution:
$$(f*g)(x) = \int_{-\infty}^{\infty} f(y)g(x-y)dy$$
 filter input signal

Consider the box filter example:

$$f(x) = \begin{cases} 1 & |x| \le 0.5 \\ 0 & otherwise \end{cases}$$

filtering output is a blurred version of g
$$(f*g)(x) = \int_{-0.5}^{0.5} g(x-y) dy$$

Convolution for 2D discrete signals

Definition of filtering as convolution:

filtered image filtering as convolution:
$$(f*g)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$$
 filter input image

Convolution for 2D discrete signals

Definition of filtering as convolution:

filtered image filtering as convolution:
$$(f*g)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i,y-j)$$
 filter input image

If the filter f(i,j) is non-zero only within $-1 \leq i,j \leq 1$, then

$$(f * g)(x,y) = \sum_{i,j=-1}^{1} f(i,j)I(x-i,y-j)$$

The kernel is the 3x3 matrix representation of f(i, j).

Convolution vs correlation

Definition of discrete 2D convolution:

rete 2D convolution: notice the flip
$$(f*g)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j) I(x-i,y-j)$$

Definition of discrete 2D correlation:

rete 2D correlation: notice the lack of a flip
$$(f*g)(x,y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x+i,y+j)$$

- Most of the time won't matter, because our kernels will be symmetric.
- Will be important when we discuss frequency-domain filtering

Simplest Convolution: the box filter

- also known as the 2D rectangular filter
- also known as the square mean filter

kernel
$$g[\cdot,\cdot] = rac{1}{9} egin{array}{c|c} 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

- replaces pixel with local average
- has smoothing (blurring) effect

out	output $h[\cdot,\cdot]$											

note that we assume that the kernel coordinates are centered

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	age			$f[\cdot$	$\cdot, \cdot]$					_
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	%	0	0	0	0	0	
0	0	0	90	90	90	90	90	Û	9	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

shift-invariant:
as the pixel
shifts, so does
the kernel

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

ou	output $h[\cdot,\cdot]$											
	0	10										

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	age			$f[\cdot$	$f[\cdot,\cdot]$					
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$										
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$											
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

image $f[\cdot,\cdot]$											
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

ima	image $f[\cdot,\cdot]$											
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	90	0	90	90	90	0	0			
0	0	0	90	90	90	90	90	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			
0	0	90	0	0	0	0	0	0	0			
0	0	0	0	0	0	0	0	0	0			

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

image $f[\cdot,\cdot]$											
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	90	0	90	90	90	0	0		
0	0	0	90	90	90	90	90	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		
0	0	90	0	0	0	0	0	0	0		
0	0	0	0	0	0	0	0	0	0		

output $h[\cdot,\cdot]$											
	0	10	20	30	30	30	20	10			
	0	20	40								

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

output $h[\cdot,\cdot]$											
	0	10	20	30	30	30	20	10			
	0	20	40	60	60	60	40	20			
	0										

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

out	output $h[\cdot,\cdot]$											
	0	10	20	30	30	30	20	10				
	0	20	40	60	60	60	40	20				
	0	30										

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

Let's run the box filter

ima	image $f[\cdot,\cdot]$									
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

output $h[\cdot,\cdot]$									
	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	0	10	20	30	30	30	20	10	
	10	10	10	10	0	0	0	0	
	10								

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

Let's run the box filter

ima	image $f[\cdot,\cdot]$								
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Οl	output $h[\cdot,\cdot]$									
	0	10	20	30	30	30	20	10		
	0	20	40	60	60	60	40	20		
	0	30	50	80	80	90	60	30		
	0	30	50	80	80	90	60	30		
	0	20	30	50	50	60	40	20		
	0	10	20	30	30	30	20	10		
	10	10	10	10	0	0	0	0		
	10	10	10	10	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

... and the result is

ima	$f[\cdot,\cdot]$									
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	90	0	90	90	90	0	0	
0	0	0	90	90	90	90	90	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	
0	0	90	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	

ou	output $h[\cdot,\cdot]$									
	0	10	20	30	30	30	20	10		
	0	20	40	60	60	60	40	20		
	0	30	50	80	80	90	60	30		
	0	30	50	80	80	90	60	30		
	0	20	30	50	50	60	40	20		
	0	10	20	30	30	30	20	10		
	10	10	10	10	0	0	0	0		
	10	10	10	10	0	0	0	0		

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$
 output filter image (signal)

Some more realistic examples

Practical matters: what about near the edge?

- The filter window falls off the edge of the image
- Need to extrapolate!
- Common ways:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge
 - •

A 2D filter is separable if it can be written as the product of a "column" and a "row".

What is the rank of this filter matrix?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

Why is this important?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

example: box filter	1	1	1		1		1	1	1
	1	1	1	=	1	*		row	
DOX TITLET	1	1	1		1				
				CO	olumn	1			

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

What is the cost of convolution with a non-separable filter?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

If the image has M x M pixels and the filter kernel has size N x N:

- What is the cost of convolution with a non-separable filter? \longrightarrow $M^2 \times N^2$
- What is the cost of convolution with a separable filter?

A 2D filter is separable if it can be written as the product of a "column" and a "row".

2D convolution with a separable filter is equivalent to two 1D convolutions (with the "column" and "row" filters).

 $M^2 \times N^2$

 $2 \times N \times M^2$

If the image has M x M pixels and the filter kernel has size N x N:

- What is the cost of convolution with a non-separable filter?
- What is the cost of convolution with a separable filter?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

usually at 2-3σ

Is this a separable filter?

kernel $\frac{1}{16}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

The Gaussian filter

- named (like many other things) after Carl Friedrich Gauss
- kernel values sampled from the 2D Gaussian function:

$$f(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2+j^2}{2\sigma^2}}$$

- weight falls off with distance from center pixel
- theoretically infinite, in practice truncated to some maximum distance

Any heuristics for selecting where to truncate?

usually at 2-3σ

Is this a separable filter? Yes!

kernel $\frac{1}{16}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Gaussian filtering example

Gaussian vs box filtering

original

Which blur do you like better? Why?

7x7 Gaussian

7x7 box

filter

0	0	0
0	1	0
0	0	0

output

input

filter

0	0	0
0	1	0
0	0	0

output

unchanged

input

filter

0	0	0
0	1	0
0	0	0

output

unchanged

input

filter

0	0	0
0	0	1
0	0	0

output

?

input

filter

output

unchanged

input

filter

0	0	0
0	0	1
0	0	0

output

shift to left by one

input

filter

0	0	0	$-\frac{1}{9}$	1	1	1
0	2	0		1	1	1
0	0	0		1	1	1

output

input

filter

0	0	0	$-\frac{1}{9}$	1	1	1
0	2	0		1	1	1
0	0	0		1	1	1

output

sharpening

- do nothing for flat areas
- stress intensity peaks

Sharpening examples

Sharpening examples

Do not overdo it with sharpening

original

sharpened

oversharpened

What is wrong in this image?

Not all simple filters are "linear transform"!

A Simple yet Important Exception: Median Filter

Operates over a window by selecting the median intensity in the window

- Belong to the class of "rank" filter as based on sorting gray levels
 - More example: min, max, range...
 - "Modern name" in deep learning? "Pooling"

Median Filter: When/Why better than Box Filter?

Fourier transform

Fourier transform

inverse Fourier transform

continuous

$$F(k) = \int_{-\infty}^{-\infty} f(x)e^{-j2\pi kx}dx \qquad f(x) = \int_{-\infty}^{-\infty} F(k)e^{j2\pi kx}dk$$

$$f(x) = \int_{-\infty}^{-\infty} F(k)e^{j2\pi kx}dk$$

$$F(k) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j2\pi kx/N}$$

$$f(x) = \sum_{\substack{k=0 \ x=0,1,2,\ldots,N-1}}^{N-1} F(k) e^{j2\pi kx/N}$$

'summation of sine waves'

Computing the discrete Fourier transform (DFT)

$$F(k) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-j2\pi kx/N}$$
 is just a matrix multiplication:

$$F = Wf$$

$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \\ \vdots \\ F(N-1) \end{bmatrix} = \begin{bmatrix} W^0 & W^0 & W^0 & W^0 & \cdots & W^0 \\ W^0 & W^1 & W^2 & W^3 & \cdots & W^{N-1} \\ W^0 & W^2 & W^4 & W^6 & \cdots & W^{N-2} \\ W^0 & W^3 & W^6 & W^9 & \cdots & W^{N-3} \\ \vdots & & & & \ddots & \vdots \\ W^0 & W^{N-1} & W^{N-2} & W^{N-3} & \cdots & W^1 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$W = e^{-j2\pi/N}$$

In practice this is implemented using the fast Fourier transform (FFT) algorithm.

Fourier transforms of natural images

The convolution theorem

The Fourier transform of the convolution of two functions is the product of their Fourier transforms:

$$\mathcal{F}\{g*h\} = \mathcal{F}\{g\}\mathcal{F}\{h\}$$

The inverse Fourier transform of the product of two Fourier transforms is the convolution of the two inverse Fourier transforms:

$$\mathcal{F}^{-1}\{gh\} = \mathcal{F}^{-1}\{g\} * \mathcal{F}^{-1}\{h\}$$

Convolution in spatial domain is equivalent to multiplication in frequency domain!

Spatial domain filtering

Frequency domain filtering

Gaussian blur

Box blur

More filtering examples

.

filters shown in frequency-domain

?

More filtering examples

filters shown in frequency-

More filtering examples

high-pass

